Deep learning [EBOOK]
Material type:
Computer fileSeries: Adaptive computation and machine learningPublisher: Cambridge, Massachusetts : The MIT Press, [2016]Copyright date: ©2016Description: xxii, 775 pages : illustrations (some color) ; 24 cmContent type: - text
- unmediated
- volume
- 9780262035613
- 0262035618
- 006.3/1 23
- Q325.5 .G66 2016
| Item type | Home library | Status | Barcode | |
|---|---|---|---|---|
E-BOOKS
|
EBOOKS-DIGITAL LIBRARY | Not for loan | EBD63 |
Includes bibliographical references (pages 711-766) and index.
Applied math and machine learning basics. Linear algebra -- Probability and information theory -- Numerical computation -- Machine learning basics -- Deep networks: modern practices. Deep feedforward networks -- Regularization for deep learning -- Optimization for training deep models -- Convolutional networks -- Sequence modeling: recurrent and recursive nets -- Practical methodology -- Applications -- Deep learning research. Linear factor models -- Autoencoders -- Representation learning -- Structured probabilistic models for deep learning -- Monte Carlo methods -- Confronting the partition function -- Approximate inference -- Deep generative models.
There are no comments on this title.